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We use the Born model for the energy of elastic networks to simulate “directed” fracture growth. We
define directed fractures as crack patterns showing a preferential evolution direction imposed by the type
of stress and boundary conditions applied. This type of fracture allows a more realistic description of
some kinds of experimental cracks and presents several advantages in order to distinguish between the
various growth regimes. By choosing this growth geometry it is also possible to use without ambiguity
the box-counting method to obtain the fractal dimension for different subsets of the patterns and for a
wide range of the internal parameters of the model. We find a continuous dependence of the fractal di-
mension of the whole patterns and of their backbones on the ratio between the central- and noncentral-
force contributions. For the chemical distance we find a one-dimensional behavior independent of the
relevant parameters, which seems to be a common feature for fractal growth processes.

PACS number(s): 64.60.Ak, 62.20.Mk, 05.40.+j

I. INTRODUCTION

There is a great variety of solid cracks in nature over a
wide range of length scales showing a rich phenomenolo-
gy and very different physical processes ranging from
cleavage to ductile fracture [1,2]. Recently, a large num-
ber of studies has been devoted to these processes from
the point of view of statistical mechanics and pattern for-
mation. In order to characterize the properties of frac-
ture patterns, a wide variety of models based on deter-
ministic or probabilistic growth processes has been intro-
duced [1-3]. In particular, the underlying fractal prop-
erties of paths leads to the definition of several models of
fracture propagation. The inspiration comes from the
study of nonequilibrium fractal growth processes, such as
the dielectric breakdown model [4] and diffusion limited
aggregation [5]. However, due to the high complexity of
the fracture propagation problem, it is very difficult to
obtain large crack growth simulations [6].

Two very interesting models are the central-force mod-
el [7] and the improved model due to Yan, Li, and Sander
[8], where noncentral forces are introduced by using the
Born model [9,10] for the elastic energy. This model is
the analogy for fracture propagation of the dielectric
breakdown model for Laplacian growth, describing very
simply the fracture propagation controlled by growth in-
stabilities (probabilistic mechanism). Moreover, this
model allows one to take into account the vectorial na-
ture of the problem. The numerical simulations show
that the patterns are fractal with an exponent depending
on the parameter of the model [8]. In addition, several
variations of the model with different local growth rules
were investigated [11].

In general numerical simulations of this model are
mainly focused on patterns presenting circular symmetry.
However, there are several kinds of real crack phenome-
na showing an anisotropic behavior. For instance, two-
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dimensional cuts through stress corrosion cracks in alloys
show connected fracture patterns which propagate along
crystallographic planes known as cleavage planes [12]
and present a well-defined growth direction. For this
type of fractures the fractal dimension is better estimated
with covering methods and the usual mass-gyration ra-
dius relation is not well defined [12]. In addition,
different growth geometries affect the value of the fractal
dimension, so that the results obtained with simulations
in circular geometry are not directly comparable with
several real fracture phenomena. This last point is
relevant also from a theoretical point of view such as, for
instance, in the fixed scale transformation (FST) method
[13,14] that refers better to cylindrical geometry for a
comparison of the analytical results.

Here we present computer simulations of fractures
generated using the Born model with uniaxial tension.
We obtain crack patterns showing a preferential evolu-
tion direction, which we define as ‘“directed” fractures.
These patterns seem to be a realistic description of cracks
with a well-defined growth direction. The simulations are
generated in cylindrical geometry, allowing us to work
with two independent length scales (the height 4 and the
width L) and therefore to evaluate more clearly the vari-
ous scaling regimes of these structures [15]. In fact, in
the cylinder geometry there are two different growth
phases: a scaling regime for pattern heights smaller than
the size of the basis of the lattice and a steady state which
continues indefinitely afterwards [15]. In the scaling re-
gime the patterns show a complicated self-affine behavior,
while in the steady state they are statistically self-similar
with well-defined asymptotic fractal properties. This
growth geometry allows us also to introduce in a very
simple way the concepts of chemical distance and back-
bone that characterize the topological and connectivity
properties of the patterns. Moreover, the exponents
governing the fractal scaling of these subsets provide ex-
tremely useful parameters to characterize the fractures
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beyond the simple fractal dimension.

We study numerically several realizations of the Born
model in two dimensions. We analyze the morphology of
the patterns and we show the essential features of frac-
tures not to be affected by variations of the kind of strain
uniaxially applied or the shape of the seed. By using a
box-counting method, which gives results not affected by
the anisotropy of patterns, we obtain for the steady-state
regime (self-similar region) the fractal behavior of the
Born model for several values of its internal parameters.
We can distinguish with sufficient accuracy between
small changes of these parameters, obtaining different re-
sults in comparison to previous simulations [8]. In par-
ticular, the wide range of parameters investigated indi-
cates a continuous dependence of the fractal dimensions
of the cluster (D) and of the backbone (Dg) on the ratio
between central- and noncentral-force contribution. This
is in contrast with the results of Ref. [8] predicting the
existence of two universality classes for the model. On
the contrary, the chemical distance seems to have a frac-
tal dimension D=1, independently of the model param-
eters.

The paper is organized as follows. In Sec. II the
growth model is introduced and the details for the reali-
zation of the simulations are specified. Section III is de-
voted to the concepts of backbone and chemical distance
that provide further information on the geometrical
properties of the generated clusters. In Sec. IV we report
and discuss the results obtained.

II. THE MODEL

In our simulations the elastic medium is modeled by a
two-dimensional network of elastic springs. The Born
model represents the elastic potential energy with two
terms, corresponding, respectively, to the central- and
noncentral-force contribution:

V=212V
ij

=Ha—PB) 3 [(u;—u)?; P+ 1B [u;,—u;]*, )
ij ij
where u; is the displacement vector of site i, 7;; is the unit
vector between i and j, @ and S are force constants, and
the sum runs over nearest-neighbor sites. In this model
the formation of cracks in a solid is probabilistic: it is ob-
tained through an iterative addition of broken lattice
bonds to the fracture already grown. At every step the
new broken bond is chosen as follows: (1) given the crack
pattern, one calculates the displacement field of the sites
by minimizing the energy of the lattice, i.e., Eq. (1); (2) a
new broken bond is randomly chosen among those con-
tiguous to the crack pattern; the probability for every
bond is
V’_}]/Z

ij

where 7 is a free parameter of the model; and (3) the new
broken bond added to the pattern modifies the boundary
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conditions for the displacement field.

The behavior of the Born model is an approximation of
classical elasticity. For instance, in spite of computing
the energy minimum, one can set to zero the force acting
on the infinitesimal volume; in this case one obtains the
Lamé equation [16], which depends on two coefficients.
In the Born model the energy of the network depends on
two parameters, a and 3, weighting the contribution of
central and noncentral forces. Because we are only in-
terested in the energy minimum, only the ratio B/a is
relevant and we can tune the value of 3 keeping a fixed
(a=1).

The model is inspired by the dielectric breakdown
model (DBM), of which it is the mechanical analog. In
fact, the bond breaking criterion is the same and only the
field used to define the probability is different, reflecting
the different physical nature of the process. For this
reason, a behavior similar to the DBM one is expected
with respect to the parameter 7 (i.e., the crack’s fractal
dimension changes continuously as the exponent 7 is
changed). Instead, a new relevant parameter is intro-
duced by the elastic equation through the ratio (8/a).
The latter parameter is responsible for relevant changes
in the fractal dimension of patterns generated, though its
effect is not very clear from previous simulations [8]. In
particular, it is not well understood if it defines two
universality classes (i.e., B/a=0 or B/a>0) or a con-
tinuous range of fractal dimension.

In addition, there are many other details that have to
be specified, in the basic scheme described previously, be-
cause in principle their change may affect the fractal
properties [7,8,11]. For example, the relevance of the
connectivity rule, which changes (in some cases drastical-
ly) the fractal dimensions of clusters, is well known. We
use the rule depicted in Fig. 1: (i) given the crack pattern,
we define as damaged each site where at least one broken
bond starts; (ii) the bonds that may be broken at the next
growth step are all those starting from damaged sites.
Also the elastic springs can be arranged in different kinds
of networks, such as square or triangular lattice. Howev-
er, on the square lattice Eq. (1) is not appropriate for
B=0 [8]. Therefore, in the following, only triangular lat-
tices will be considered. The aim of these choices is the
comparison of our results with those of Refs. [7,8,11].

Another important element is the kind of stress to be
applied. The latter influences the global shape of the
fracture. We apply a uniaxial tension (i.e., displacement
of only two opposite sides of the strip (Fig. 2), in order to
obtain directed crack patterns orthogonal to the stress.

FIG. 1. The connectivity rule used in this paper: the broken
bond is indicated by a dashed line. The bold lines indicate those
bonds which may be broken in the next stage of growth.
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FIG. 2. Uniaxial tension applied on the medium.

With uniaxial tension it is quite natural to use fixed
boundary conditions on the two sides not stressed. From
the simulations we notice that two other factors are not
relevant: the orientation of the lattice with respect to the
stressed sides and the angle ¢ between the tension and the
sides to which it is applied. In fact, a variation of these
elements changes the fractal dimensions by less than 4%.
Because of that, we perform our simulations with the
simplest value (¢ =0) for that angle.

The last detail to be specified is the shape and position
of the initial seed. We perform simulations beginning
with three different situations: (1) one broken bond in the
middle of the strip; (2) one broken bond near one fixed
boundary and perpendicular to it; and (3) one of the sides
not stressed entirely made of broken bonds.

Given this set of choices the Born model depends only
on the “internal” parameters a, B, and 7. With these
prescriptions we generate many clusters for different lat-
tice sizes and various values of the internal parameters.
The clusters generated (see Fig. 3) are very similar to
DBM realizations, even if now we are dealing with a vec-
torial field. The reason for this behavior is the close rela-
tion between Born model and Lamé equation, which is a
vectorial generalization of the Laplace equation.

III. CHARACTERIZATION OF THE FRACTAL
AND TOPOLOGICAL PROPERTIES

The first quantitative description of the structures gen-
erated by our Born model is through the fractal dimen-

FIG. 3. A realization of a
cluster with size of 128 X 336.

sion Dy that directly measures the scaling of density as
length scale is changed. However, this parameter is not
sufficient to completely characterize the clusters. There-
fore it is useful to introduce some other parameters that
can quantitatively describe the topological and connec-
tivity properties of the aggregates. These parameters are
the exponents governing the scaling (i.e., the fractal di-
mension) of two subsets of the clusters: the backbone and
the chemical distance.

The latter is the shortest path between the two ends of
the fracture pattern. Although this definition is topologi-
cal, its physical interpretation is immediate: it is the line
that really separates the elastic medium in two parts.

The backbone is generated starting from the cluster
and eliminating all tips and closed loops connected to the
chemical distance only by a single path (Fig. 4). Also the
physical meaning of the backbone is clear: it is part of the
aggregate that really changes the connectivity properties
of the system affecting the macroscopic properties of the
medium. For example, if we inject a liquid in the frac-
ture, the backbone is the part of the patterns where the
fluid flows.

Starting from the whole cluster there are various
different algorithms to select the bonds belonging to the
backbone and the chemical distance. One possible
method exploits the “conductivity” properties of the sub-
sets, giving to each broken bond a finite ‘“random” resis-
tance and studying, in analogy with the fluid example, the
current flow in the cluster. Unfortunately some numeri-
cal problems make this method rather lengthy and not re-
liable. For this reason, in order to find chemical distance
and backbone, we set up a computer algorithm based on
the topological properties.

The shortest path between the two opposite sides of the
strip is found in this way. One starts from one side (A4)
and follows all possible connected paths, labeling each
broken bond with the distance separating it from 4. In
practice, this is done iteratively. At the nth step all bro-
ken bonds labeled by n are considered. Every broken
nearest-neighbor bond is marked by » +1 unless it is al-
ready labeled (this would mean that there is a shorter
path connecting it to 4) (Fig. 5). When the opposite side
(B) is reached, the chemical distance is identified by go-
ing backwards from B to A, i.e., passing at every step
from a bond labeled by n to its nearest neighbor labeled
byn—1.

Starting from the chemical distance, a similar process,
applied several times, leads to the identification of the
backbone. This subset of the aggregate is formed by the
chemical distance and all closed loops connected to it by
at least two nonintersecting paths. To identify these
loops one starts from all nodes passed through by the
chemical distance and labels every broken bond with the
distance from it to the closest node and with a node label.
When one finds that a nearest neighbor is already labeled,
a loop is identified. But if the node label is the same, one
deals with a “bad” loop as shown in Fig. 5. Only when
the node label is different is the loop part of the back-
bone. This process must be applied several times in order
to find all good loops connected to other loops and not
directly to the chemical distance. In this way one has a
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FIG. 4. The differences between the cluster (left), the backbone (middle), and the chemical distance (right ) for a small aggregate.

reliable method which is even faster than the “physical”
ones, because the number of steps grows as L © instead
of L4

It is important to note that the choice of the chemical
distance is usually not unique: there are several different
shortest paths leading from one side to the opposite one.
We consider only one of them, because their length is the
same. In this way, we can isolate from the clusters all

bonds belonging to the chemical distance or to the back-
bone, obtaining the corresponding substructures (Fig. 6).
The fractal exponents of these subsets can be defined as
the box-counting dimensions through

n (h,)~1"D 3)

where n; (h,l) is the number of /X! squares needed to
cover the cluster of height 4 and base L, or its substruc-
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FIG. 5. Left: the labeling process for the identification of the chemical distance. Right: the identification of the backbone; the
loops belonging to it are those labeled starting from two different nodes.
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FIG. 6. The whole cluster, the backbone, and the chemical distance for a typical realization of our simulations.

tures. This equation holds for 1<</<<L and the ex-
ponent defined does not depend, apart from finite size
effects, on h and L. This method is not affected by the
anisotropy of the patterns (as the mass-radius relation)
and allows us to distinguish and take into account the
various growth regime and interface effects on the fractal
dimension results. This is because we can analyze square
sections of the patterns which are far from the boundary
region of growth, eliminating the effects due to the fact
that the interface has a lower fractal dimension because
the structure is not asymptotically grown. In addition,
we focus our analysis in a square region with height
larger than the lattice basis size, in order to view only the
asymptotic self-similar part of the patterns. In this way
we can define without ambiguity a “frozen” steady-state
region of the fractures where the scaling behavior is
defined uniquely. The crack patterns are therefore
characterized in this region by the three exponents Dy,
Dg, and D, corresponding, respectively, to the fractal
dimension of the whole cluster, of the backbone, and of
the chemical distance.

IV. RESULTS

With the model described in the preceding section we
have simulated cracks in lattices under uniaxial tension.
The tension is applied on the largest sides of rectangular
lattices of different sizes: 64X 168 and 128 X336. The
clusters obtained are formed by up to 10* broken bonds
and to our knowledge are the largest produced until now
with this method. We perform eight realizations for each
geometry of the seed and for each value of the internal
parameters. In the following we will present the results
of the simulations with three different types of seed
geometry and for a wide range of values of the internal
parameters.

A. Seed in the middle of the lattice

Here we show the results obtained for a seed formed by
one broken bond in the middle of the rectangular lattices.
A typical result for a crack pattern of this type is shown
in Fig. 7. The patterns obtained are very similar to those
obtained for uniaxial tension in Ref. [6]. The patterns
have an elongated shape perpendicular to the applied
load. There are also a high number of side branches, and
the crack looks very much like a diffusion limited aggre-
gation (DLA) cluster with anisotropic sticking probabili-
ty. We observe also the instability of the crack tips,
which show the tendency to split, contrary to Ref. [6]. In
this sense the side branches are mainly tips that lost the
competition during the tip-splitting process.

We measure the fractal dimension of the clusters for
two different values of the parameter B:

FIG. 7. A cluster started
from a seed in the middle of the
lattice.
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However, these values are only indicative and we do C +

not perform the analysis over the full range of the B
values. This is because with such seed geometry it is im-
possible to define which part of the structure is really
frozen, in the sense that it is asymptotically grown. In
addition also the mass-gyration radius relation is clearly
inappropriate because the shape does not have a circular
symmetry. Nevertheless, the values obtained are very
close to those measured with other seed geometries.

B. Seed on the fixed boundary side

In this scheme we used two types of seed. First, one
side entirely made of broken bonds, secondly one broken
bond at the center of the side. In both cases the pattern
dynamics shows two growth phases. First a scaling re-
gime, for crack heights smaller than the size of the base,
followed by a steady-state regime in which the scaling
properties are invariant along the growth direction (self-
similar region).

The scaling regime is characterized by the competition
between different trees of the growing pattern. In the
steady state only one tree survives, screening the growth
of the others. In this region the structures are statistical-
ly self-similar because, after the widths of patterns reach
the maximum lattice size (the basis size), the structures
have a single diverging length. The same result has been
found by Evertsz [15] for DBM clusters grown in cylin-
drical geometry. We focus our attention on the upper
square region of the cluster (steady-state zone [15]) where
the fractal behavior does not depend on the height and
the seed shape. In particular, we choose a region at
height greater than L (usually ZL) and at least at JL
from the tip of the structure. It is possible to show that
in this region the pattern is statistically self-similar and
asymptotically frozen.

Also in this case the structure is highly ramified and
shows that the tip-splitting phenomenon is responsible
for the pattern branching. In addition, the surviving tree
of the steady state has the same features as the main
branch of the simulations with a central seed. These re-
sults suggest that the steady-state regime is independent
of the geometry of the starting seed.

We generate eight realizations for each value of the ra-
tio B/a and the parameter 7. We have determined the
box-counting dimensions of a square section of the clus-
ter suitably far from the boundaries. This is actually
done by covering the region with boxes of sizes
1=2°...,2% where k =logL /log2. The dimensions are
obtained from the log-log plots, as shown in Fig. 8 for
n=1 and B=0. Clearly the exponents are the quenched
mean values of the slopes averaged over the number of
realizations. The results are reported in Tables I-III.

In Table I we report the fractal dimension for different
values of the parameter 8. The most relevant result is the
continuous dependence of the fractal dimension Dy on
the value of B. This result does not agree with the con-
clusion, stated in Ref. [8], that the model shows two
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FIG. 8. Dependence of the number of full boxes N(L) on the
box size L for the cluster (top), the backbone (middle), and the
chemical distance (bottom) for a typical realization of size
128 X 336.

universality classes, respectively, for 5=0 and B7#0. Ac-
tually, our results show very clearly that the fractal di-
mension changes continuously with the ratio (8/a),
reaching an asymptotic value for 8/a—0. This result is
supported also by the value of the fractal dimension of
the cluster’s backbone. In fact, also in this case the value
of the exponent depends continuously upon the value of
B. Moreover, there is not a clear distinction between
structures with S=0 and B0 but very small. It is im-
portant to notice that the value of Dy is close to the value
of the fractal dimension of the whole clusters. Loops
then play a major role in the pattern formation of this
model. This is not surprising; in the Born model the pos-
sibility to form closed loops (which does not exist in
DBM) makes the backbone properties closely related to
those of the whole structure.

The results obtained for the chemical distance are very
different. In this case the exponent D, governing the
scaling behavior of the minimum path length between
two points takes on its one-dimensional value, D=1, for
all the values of the parameter 8. Only for 5=0 does the
value of D, seem to be appreciably greater than 1. How-
ever, for larger sizes of the lattice (see Table II) the value
is lower, leading to the conclusion that this anomaly is a

TABLE 1. Values of fractal dimensions for =1 and several
values of the ratio 8/a. The cluster size is 64X 168.

Simulations with =1 and a=1

B Dr Dy Dc
0 1.52+0.04 1.41+0.04 1.09+0.03
0.001 1.55+0.04 1.421+0.04 1.03+0.03
0.01 1.61+0.04 1.47+0.04 1.01£0.02
0.05 1.63+0.04 1.53+0.04 1.01+0.03
0.1 1.68+0.03 1.58+0.04 1.01+0.02
0.5 1.70+0.03 1.59+0.04 1.05%+0.03
5 1.741+0.03 1.62+0.03 1.031+0.03
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TABLE II. Values of fractal dimensions for =1, a=1,
B=0, and cluster size 128 X 336.
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TABLE III. Values of fractal dimensions for n#1. The
cluster size is 64 X 168.

Simulations with =1, a=1, =0
Dp Dy D¢

Simulations with a=1, =0

7=0.5 n=1 n=1.5 n=2

1.50+0.03 1.28+0.03 1.04+0.02

Dp 1.85+0.05 1.52+0.04 1.35+0.04 1.28+0.03

finite size effect. The fact that D is equal to 1, indepen-
dently of the internal parameters of the model, seems to
be a common characteristic of fractal growth phenome-
na. In fact, the same result was found for DLA [17],
where it suggests the absence of an upper critical dimen-
sion. In this sense, it should be important to test our re-
sults also for values of the Euclidean dimension greater
than 2.

For the particular value =0, we perform simulations
with 771 and for larger lattice sizes in order to test the
convergency of the results. With respect to the parame-
ter 7 the behavior is the usual one, found also for the
DBM. For 7>1 the screening effects of Eq. (1) are
enhanced and the fractal dimension decreases for increas-
ing value of 7. The opposite phenomenon occurs for
7 <1 (see Table III). In Table II we report the values ob-
tained for the exponents D, D, and D for clusters gen-
erated with =0 and lattice size 128 X336. While the
fractal dimension of the whole cluster is stable with
respect to the increasing lattice size, the value of Dy is
appreciably changing. This calls for larger simulations in
order to reduce finite size effects.

In summary , we have performed computer simulations

of the Born model under uniaxial tension. We have ob-
tained “directed” crack patterns with a well-defined
growth direction that seem to be a realistic description of
some kinds of experimental fractures. We investigate a
wide range of the internal parameters of the model, and
by developing an algorithm based on the topological
properties of the clusters, we are able to isolate the back-
bone and the chemical distance of the generated clusters.
With a box-counting procedure, we find the scaling
behavior as a function of the internal parameters and
boundary conditions. We find a continuous dependence
of the fractal dimension on the parameter B that modu-
lates the noncentral-force contribution in the elastic ener-
gy of the model. On the contrary, for the chemical dis-
tance, we have the same scaling exponent D-=1 for
every value of the internal parameters, suggesting that
this is a common feature of fractal growth processes.
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